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This paper discusses the structure of mod-p cohomology rings that are finitely
generated as algebras. The motivation for this work was a desire to understand the
cohomology of classifying spaces of finite loop spaces - that is, of spaces whose
loop spaces have the homotopy types of finite complexes.

If G is a compact connected Lie group that has no torsion at a prime p, then the
mod-p cohomology of its classifying space BG can be determined knowing only the
action of the Weyl group W of G on a maximal torus 7; for

H*(BG; F,)=H*BT; )" ®t,

[4; Proposition 29.2). If, in addition, p does not divide the order of W', then
H*(BG; F,)= H*(BT; F,)", and severe restrictions are placed on W and H*(5G: F,,)
for purely algebraic reasons; indeed, W inust be a generalized reflection group, and
H*(BG; [F,) must be one of a short list of examples [7], [6; Ch. 2, §5]. J.F. Adams
and Clarence Wilkerson [17], [2] showed that these algebraic restrictions hold
equally for an appropriate p-torsion free finite loop space G by recovering notions
of its maximal torus and Weyl group from the cohomology of its classifying space
as an algebra over the Steenrod algebra. They showed that H*(BG; F,) can be
embedded as an unstable algebra over the Steenrod algebra in an algebraic closure
isomorphic to an H*(BT; [,); the Weyl group of G is then defined as the Galois
group of this extension of algebras. The object of this paper is to extend the notion
of a Weyl group to finite loop spaces with torsion, or at least to those - perhaps
all - whose classifying spaces have Noetherian cohomology. The results given here
apply to all Noetherian mod-p cohomology rings.

The right extension of the notion of Weyl group is suggested by the following
theorem of Quillen [12]. Let G be any compact Lie group. An elementary abelian
p-group in G is a finite subgroup E of G such that E=Z/p X --- X Z/p; the number
of factors of Z/p in E is called the rank of E. Let </(G) be the category that has

(1) as objects the elementary abelian p-groups E in G, and

(2) as maps the monomorphisms induced by conjugations in G - that is,
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monomorphisms i ; E—E’ such that i(x)=gxg~' for some ge G and all xeE.

The mod-p cohomology functor sending E to H*(E; ) is a contravariant func-
tor from .&(G) to the category of rings; the inclusions £ G induce a ring homo-
morphism

H*(BG; F,)~lim H*(E; F,)

where the limit is :aken over the category .«/(G). Quillen’s main theorem [12; 6.2]
asserts that this map is an F-isomorphism; an /*-isomorphism is a homomorphism
f: A-B of rings of characteristic p such that

(1) xeKer(f)=x"=0 for some r>0, and

(2) ye B=4r=0: y* € Im(f).
(These two conditions mean that the varieties of geometric points associated to 4
and B are isomorphic.)

The category .#/(G) generalizes the Weyl group of G in the following sense. If T
is a maximal torus of G, then T contributes to .«/(G) an elementary abelian p-group

Er={xeT|x"=1};

W acts on E as a group of automorphisms. If G is connected and p-torsion free,
then all elementary abelian p-groups in G are contained in Ej [3; Theorem B].
Furthermore, all automorphisms of objects in .%/(G) are induced by elements of W
(see Proposition 4.11 below). To reconstruct «/(G) from H*(BG; [,), we will use
the following observations:

(1) If G is a compact Lie group, there is a one-to-one correspondence between
conjugacy classes of elementary abelian p-groups in G and prime ideals of
H*(BG; [F,) that are homogeneous and stable under the action of the mod-p

Steenrod algebra [12; 2.2, 12.1]. The elementary abelian p-group E corresponds to
the ideal

P=Ker(H*(BG; F,)~TE), where 'E=H*E;F,)/V0

(V0= {x|x"=0 some r>0} is the ideal of nilpotent elements).

(2) If A is a Noetherian cohomoloy ring, then A has finitely many homogeneous
ideals P that are stable under the action of the Steenrod algebra; each A/P is an
integral domain over the Steenrod algebra. By the construction of Adams and
Wilkerson, each A/P can be embedded in an algebraic closure I” such that I is in-
tegral over A/P and I'=I'E where E is an elementary abelian p-group. In case
A=H*(BG; [F,), E may be taken to be an object of «(G) corresponding to P.

Thus, consider the category 4 whose objects are integral embeddings A/Pc T,
I'=TE, and whose maps are commutative diagrams

r

rl

A/P

A/P’
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where PC P’; ¢ is a generalization of a Galois group. There is a covariant functor
I from ¢ into the category of rings that sends A/P< /I to I'. The two main results
of this paper are

) /l—*li!_n I is an F-isomorphism (Theorem 1.4).

(2) If G is a compact Lie group and A= H*(BG; [,), then there is an equivaience
of categories ./ (G)°°— ¢ (Theorem 1.6).

In the proofs of these theorems, standard results about ideals in Noetherian rings
and in integral extensions of rings (see, for example, [5], [10], or [13]) will be used
without specific references being given. With one exception, proofs can be found
in [9] and [15] that the needed results hold for ideals that are homogeneous and
stable under the action of the Steenrod algebra; the exception is treated in section
four of this paper.

Siu P. Lam has given independent proofs of most of the results in this paper
(Thesis, Cambridge University and [1]). He and J.F. Adams have recently genera-
lized these results to a somewhat larger class of unstable algebras over the Steenrod
algebra - those having an upper bound on the number of algebraically independent
elements in them (private communication).

I would like to thank J.F. Adams and Clarence Wilkerson for much inspiration
and encouragement. I would also like to thank R. James Milgram for introducing
me to the Dickson invariants.

1. The fundamental category of a Noetherian cohomology ring

Fix a prime p. Let F, be the field of p-elements, and let .4 =.4(p) be the [,-
Hopf algebra of mod-p reduced powers. For p-odd, #4(p) is the sub-Hopf algebra
of the mod-p Steenrod algebra .=/(p) generated by PP P ... If p=2,
4 =./(2); 1 shall then write P’ for Sq’. Let d=2 for p-odd and d=1 for p=2. By
the term .#-algebra, 1 shall mean a graded .4-algebra that satisfies the Cartan
formula. Such an algebra A is unstable if xe A" implies

; 0, di>n
Px=1" ’
{x” , di=n.
In particular, A”=0 for n<0.
Al elementary abelian p-group E o7 rank n is a direct sum of n-copies of Z/p. Let
TE=H*(E; F,)V0,

where in any algebra, VO denotes the nil radical. Then I'E is an unstable .4-algebra,
and F'E=F,[ty,...,1,], deg t;=d. The action of .4 on I'E is determined by Pl =1
Let A be an unstable .4-algebra - for instance H*(BG; F,) where G is a finite
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loop space. Assume throughout this discussion that A is Noetherian as an F,-
algebra. An ideal /C A that is homogeneous and A-stable will be called a .4-ideal.
Let P be a prime Z-ideal, and consider the connected Noetherian integral domain
A/P. By theorems of Adams and Wilkerson [2; §1, §4], there exists an unstable .4-
algebra I" and a #-algebra embedding .1/P< " such that I” is an algebraic closure
of A/P in the category of unstable #-algebras, and I” satisfies the following:

1.1. (1) There exists an elementary abelian p-group E such that I'=TIE; in fact,
E=(T"%*

(2) T is finitely generated as a A/P-module [2; Theorem 1.8].

(3) If A/P< I is another such embedding, then there is a commuting diagram
of .#-algebras

A/P !

rl

(4) The extension of graded quotient fields Q(A/P)SQ(I') is a normal extension
of graded fields, and I is the integral closure of A/P in Q(I"). The Galois group
of this extension consists of homogeneous .#-isomorphisms induced by automor-
phisms of E.

1.2. Definition. The fundamental category ¢(A) of a Noetherian, unstable .4-
algebra A is defined as follows:

(1) An object of £(A)is a #-map ¢:.1—=1, such that ¢ is a finite morphism and
I,=T'E for some elementary abelian p-group E. (Recall that a morphism f: A—B
of rings is finite if B is finitely generated as an A module with the module structur.
induced by f.) Thus, ¢ induces a finite cmbedding of A4/P, in an algebraic closure
I,, where P,=Ker(p) is a prime #-ideal.

(2) A map of #(A) is a commutative diagram

of #-algebras. Denote this diagram by f:¢—6.

if I'y=TE, then the rank of E is the same as the Krull dimension of I;; denote
that number by rank(I',) or rank(p). By choosing a single elementary abelian p-
group £ of appropriate rank for each prime #-ideal P and considering only embed-
dings I'/P<I'E, one sees that &(I") is equivalent to a small - indeed, finite -
category.
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Let I" be the covariant functor from & = #(A) to the category of unstable 4-
algebras which assigns to each object ¢ : AT, the target algebra I',. Call the pair
(¢, I) the universal cover of A. There is a natural map of .4-algebras

(1.3) A—+li(_x_n1“¢, QE .

Following Quillen [12], I shall call a morphism f:A—B of [F,-algebras a
uniform F-isomorphism if there exist integers r >0, s=0 such that

(1) aeKer(f)=a"=0, and

(2) be B=FJae A such that f(a)=(b)".
The Main Theorem of this paper is the following:

1.4. Theorem. If A is a Noetherian, unstable .#-algebra, then the natural map
A=Im L, ge &(A),

is a uniform F-isomorphism.

The proof of this theorem, as well as the proofs of the other theorems in this
section, will be deferred.

Let f:4'—A be a map of Noetherian, unstable .#-algebras; this map induces a
functor

FiéA)—&AY)

that assigns to each object ¢ : A =T, the object §: A’—=7y such that =f-¢ and I,
is the subalgebra of all elements of I, that are algebraic over A’. There is a com-
muting diagram

f

AN———— A

lim [,— lim I,
«— «—
fe £(A') pe £(A)

induced by f.

1.5. Proposition. If f: A’ A is a morphism of Noetherian, unstable .3-algebras,
then fis a uniform F-isomorphism iff f is an equivalence of categories (compare [12;
Proposition 10.9]).

Let G be a compact Lie group and X a G-space such that X is either compact
or is paracompact and has finite cohomological dimension. In the notation of
Quillen [12], let (G, X) be the category defined by the following:

(1) An object of #(G, X) is a pair (E, ¢) where EC G is an elementary abelian p-
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group and ¢ is a connected component of X E (the fixed point set of E).

(2) A map (E, c)—(E’,c¢’) of (G, X) is a homomorphism 8 : E— E’ such that, for

some element ge G, gEg 'CE’, ¢'Cgc, and 0(x)=gxg~! for all xeE.

Let A=HE(X; F,) (equivariant cohomology) and let H be the contravariant |

functor from .#/(G, X) to the cateory of #-algebras given by H(E, c) = H*(E; IF,,)/\/—(S.
For each (E,c)e #(G, X) there is an equivariant inclusion (£,c)<(G, X), which
induces

(E, 0)*: HE(X; Fp)—~ H(E, ¢).

H

i
!

Now (E, c)* is a finite morphism [11; 2.3], and H(E, c¢)=TE; thus A—=H(E,c) is an -

object in &(A); denote this object by #(E,c). The assignment (E,c)=#(E,c) is a
contravariant functor from (G, X) to &(A).

1.6. Theorem. If G is a compact Lie group, and X is a G-space that is either compact
or is paracompact and has finite cohomological dimension, then

H: (G, X)P = &(A),

where A=Hg(X; F,), is an equivalence of categories.

In [12], Quillen described the variety of geometric points associated to the
equivariant cohomology ring H&(X;F,). His description applies to any
Noetherian, unstable .4-algebra A as follows.

Let © be an algebraically closed field of characteristic p. For 4 an F,-algebra,
let A(2) be the variety of Q-valued points of A (that is, F,-homomorphisms
A—Q), and for f: A— B a morphism of [p,-algebras, let f2:B(2)—A(RQ) denote
the induced map of varicties. If E is an elementary abelian p-group of rank n, then
TI'E(R2) is an affine space of dimension n; denote that space by E® Q. Let

(ERQ) =E®Q- | E'®9).
E'<E
If 9: A—T, is an object of &(A), then E,® Q=1 ,(2) is an affine space, and there
is an affine map ¢%: E,®Q —A(Q). Let

Vo=9%E,QQ), V) =9%E,RQ)".

Finally, let W(g) be the group of automorphisms of ¢ in the category &(A);
W(p)=Gal(I',/Im ¢). Then W(p) acts as a group of automorphisms on the
varieties E,® 2, and ¢?g?=¢? for all ge W(p).

1.7. Theorem (Stratification Theorem). If A is a Noetherian, unstable #-algebra,
then

(1) There is a homeomorphism of varieties

lim E,@Q-A(9Q).

e é(A)



Noetherian cohomology rings 197

(2) If L is a set of representatives of the isomorphism classes of £(A), ithen

AQ=11V,
eel
is a disjoint union of locally closed, irreducible affine subvarieties.
(3) W, acts freely on (E,®R)*, for each g € &(A), and V[ =(E,Q2)* 'W,; V,
is the closure of V,, and V,C V,. iff there is @ morphism from ¢’ to ¢ in £(A).
(4) The irreducible components of A(2) are the V,, such that ¢ is minimal in the
sense that o' = @€ &(V)=¢' = is an equivalence.

2. Elementary properties of <(A); proofs of 1.6, 1.7

Fix a Noetherian, unstable .2-algebra A, and let (4, I") be its universal cover. In
the discussion below, all ideals mentioned will be assumed to be .4-ideals. The most
important fact for understanding prime .4-ideals is the following:

2.1. Lemma (Serre [14; Proposition (1)]). If E is an elementary abelian p-group, and
PCTE is a prime #-ideal, then JE’C E such that
P=Ker(I'E—~TE’).
As an illustrative application, consider

2.2. Lemma. Let ¢:A—T, and 6:A—1I} be objects in ¢&; let P,=Kerg and
Py=Ker 8. Then there is a map

in & if and only if P,C Py. Furthermore, each such f is epic; P,= Py iff fisan
isomorphism.

Proof (Adams and Wilkerson [2; 1.10]). Suppose P,C P,. Since ¢ is a finite mor-
phism (in particular, I}, is an integral extension of Im @), there is, by the Cohen-
Seidenberg going up theorem, a prime #-ideal Q C I, such that ¢ '(Q) = Py. Thus,
there is a commutative diagram
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where Ker ¢’=P,. By Lemma 2.1, I,/Q=TE for some elementary abelian p- :‘
group E. By 1.1(3), there is a diagram

T,/0

Iy

Composition of these diagrams gives the morphism f.

Now, consider a map f:¢—6 in &; we wish to show that f is epic. Arguing as
above, we may assume that P,=Py=0. Then the monomorphisms ¢ and 6 are
finite; therefore, I', and I'y must have the same Krull dimension as A [13; Ch. III,
Proposition 3]. Again arguing as above, Im(f) is of the form I'E and is finite over
A; thus, Im(f) has the same Krull dimension as A. But the Krull dimension of I'E
is the same as the dimension of E~(I'E)? as a F,-vector space. Thus, dim I} =
dim If =dim(Im f)?, and f is an isomorphism.

2.3. Proposition. The universal cover (¢£,I') of a Noetherian, unstable .4-algebra A
satisfies the following:

(1) & is equivalent to a category with finitely many objects.

(2) I' is a functor from & to the category of .#-algebras; for ¢ € #, there exists
an elementary abelian p-group E such that I',=TE, and if p—0¢€ ¢, then I ;=1 is
epic.

(3) If 9—0 and 9—n are two maps in ¢ such that Ker(I',—Iy) C Ker(l',—13),
then there is a commutative diagram

e

@

I

n

in ¢; if Ker(ly,=Iy)=Ker(I',~1I},), then 0—n is an equivalence. All endomor-
phisms in ¢ are isomorphisms.

(4) If pe ¢, and P is a prime #-ideal of T, then there exists p—0€ £ such that
P=Xer(I',—I}); if P is the maximal ideal of T,,, then 0 is a final object of ¢.

(5) I is faithful and # has a final object.

(6) ¢ is closed under cofibred coproducts.

Proof. Statements (2) to (5) follow from the definitions of 4 and I' and from
Lemmas 2.1 and 2.2. These statements imply (6) in the following way. Let f:¢p—6
and g:¢—n be maps in ¢, and let P,C I, and P, C I, be the kernels of fand g. |
assert that P,+ P, is prime. For identify I, with I'E, where E is an elementary
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abelian p-group. Then there are subspaces Ey, E, C E such that P;=Ker(I'E—TE))
and P,=Ker(l'E—-TE,). Let P= Ker(I'E—~I(E;NE,)); then P= P;+ P,. There is
an object n€ ¢ such that I, =TI,/P, and by (3), there is a commuting diagram

p—0

n———n

It is now straightforward to verify that this is a cofibre square.

Finally, to prove (1), it suffices to note two things. First, there are finitely many
morphisms between objects in ¢ since those morphisms are determined by maps be-
tween two finite vector spaces. Second, the isomorphism classes of objects in < are
in one-to-one correspondence with the prime #-ideals in /i. And

2.4. Lemma. If A is a Noetherian, unstable 4-algebra, then A has finitely many
prime 4-ideals.

Proof. Since A is Noetherian, it has finitely many minimal prime ideals. Let PC A4
be a minimal prime ideal, and let ¢ : A —I'E be a finite morphism with kernel P. By
the going up theorem, if P'C A is a prime containing P, then ihere is a prime QCI'E
such that P'= ¢~ !(Q). But there are finitely many prime #-ideals Q C I'E since they
correspond to sub vector spaces of E.

Proof of Theorem 1.7. Together with the main theorem, the above proposition pro-
vides the properties of £ and I used by Quillen to prove the Stratification Theorem
[12; §9, §10].

2.5. Proposition. Let ¢ be a category and I a functor from & to the category of
4-algebras satisfying 2.3(1) and 2.3(2). Then

A=liml, ¢ed,
is a reduced, Noetherian, unstable .#-algebra. Furthermore, each projection A—1,
is a finite morphism.

This proposition will be proved in Section 5.

Proof of Theorem 1.6. In view of Proposition 1.5, Theorem 1.6 is subsumed under
the following:

2.6. Theorem. Let & be a category, and let I" be a functor from ¢ to the category
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of #-algebras. Then the pair (&,I') is equivalent to the universal cover of a
Noetherian, unstable #-algebra if and only if & and I satisfy 2.3(1) to 2.3(5). In
that case, there is a natural equivalence

F1EEA) where A=Tm T, peE.

Proof. Let A =]i1_p I,, € é. For each g € é, the projection AT, is a finite mor-
phism; thus, this projection is an object of &(A); call it .¥;,. Clearly .# is a functor.
To complete the proof, we must show that .# is an equivalence of categories. The
argument given here relies on the reader checking the details in Quillen’s proof of
the Stratification Theorem. A more transparent proof, not appealing to the
Stratification Theorem, will be given in Section 6.

Using the Stratification Theorem, simply note that .# induces a diagram of
varieties

lim.# .
limIr———lim I
~ -

“(A) -
\ /

A(Q)
By Quillen’s proof [12; §9, §10], conditions 2.3(1) to 2.3(6) imply a stratification
A =11 V)

(notation as in 1.7) where the disjoint union is taken over a set of representatives
¢ of the isomorphism classes of 4. L_Lm 2 maps this stratification to the one given
in Theorem 1.7. By Quillen’s proof of [12; Proposition 1.10], .# is an equivalence.

Remark. As a set of axioms, 2.3(1) to 2.3(5) are somewhat redundant. In particular,
the second and third assertions in 2.3(3) can be derived from the first assertion and
the other axioms.

3. Proof of the Main Theorem

Throughout this section, let /1 be a Noetherian, unstable A-algebra. The follow-
ing proposition is a partial generalization of the Chinese Remainder Theorem.

3.1. Proposition. The map induced by quotients
A—=lim A/P,
-

where P runs over the prime #-ideals of A, is a uniform F-isomorphism.

Proof. Since the minimal prime ideals of A are #-ideals, the kernel of the above
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morphism is V0. Let M,, ..., M, be the minimal prime ideals of A. An element x of
lir_n A/P can be represented uniquely as an n-tuple (xy,...,x,), x,€ A/M;, such
that, for all / and j, x; and x; reduce to the same element of A/P whenever
M;+ M, C P. Suppose, inductively, that there exists y € A such that x;=y (mod M,)
for each 1 <i<k. Let

k=1
I= M,
i=1

If Pis a prime #-ideal of A such that I+ M, C P, then y —Xx; € P. Since the intersec-
tion of all such ideals is }/I+ M, y—x,€}IeM,. Thus, for some m, (y-x;)" €
I+ M,. We may assume that m is a power of p. Thus, (y —x;)"=y"-x;"=a-b,
where ae I, be M,. Put

z=(y"-a)=(" - b).

Then z=x{" (mod M,) for 1 <i<k. Thus the map A—*lix_n Ap is an F-isomorphism.
Since lim Ap is Noetherian, the map is a uniform F-isomorphism.
Let (&4, 7") be the universal cover of A. For each object ¢: A—T, of &, let

A,={xel,|x" elm ¢ for some r}.

If f:9—6€ ¢, then f:A,—Ag since the property of having a p-th root in {7 is
determined by Steenrod operations [2; Theorem 1.2]. Thus ¢=A, is a subfunctor
of I'. Let

3.2) /T=lir_n/i¢,, Qe b,

There is a natural map A—A which is universal for maps of A into reduced,
unstable .#-algebras that are closed under purely inseparable extension (that is,
satisfy [2; (1.2.2)]).

3.3. Proposition. The natural map A—A is a uniform F-isomorphism, and
E(A) = &(A). if f: A" > A is a map of Noetherian, unstable 4-algebras, then the in-
duced map f: A’ — A is an isomorphism iff f is an F-isomorphism.

Proof. Let ¢,0€ ¢, and let P,=Ker ¢, P,=Ker 6. Then there is a commutative
diagram

iff Py=P,; the induced isomorphism A, = A4 does not depend on the choice of f
since p-th roots are unique in an F,-integral domain. Therefore, the inverse limit
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(3.2) may be taken to be a limit over the category of prime .4-ideals of A. Now,
for each ¢, A/P,—A, is an F-isomorphism, and a finite limit of F-isomorphisms
is again an F-isomorphism. By Proposition 3.1, A=A is an F-isomorphism.

To see that £(A)= &(A’), note first that, by the construction and the uniqueness
of p-th roots, &(A) is a full subcategory of ¢(A). Now A—A is finite since A1 is a
subalgebra of the finitely generated A-module [] I, where ¢ runs over a set o
representatives of the isomorphism classes of &(A). Thus, finally, if g € ¢(A), then
A-A-T, is an object of &(A).

To complete the proof, let f: A’—A be an F-isomorphism. If g€ é(A), then
S "(Pu,) is a prime #-ideal of A’ and A'/f “(Pq,)co/l /P, is a purely inseparable ex-
tension. Now, an F-isomorphism of Noetherian [F,-algebras is finite; thus,
A'—=A—T, is an object of £(A’), and A, ,>A,. Consequently, A’ A is epic.
Finally, if P’is a prime #-ideal of A’, then there exists an object ¢ € ¢(A) such that
fY(P,)=P". Thus, A’—A is monic.

Proof of Proposition 1.5. The previous proposition shows that an F-isomorphism
induces an equivalence of categories. The other half of 1.5 is an easy consequence
of the Main Theorem.

Proof of Theorem 1.4. The first step in proving the Main Theorem is to show ihat
we may suppose A to be an integral domain. Let P be a prime .4-ideal of A, and
let #p be the full subcategory of # that consists of objects ¢ such that PC P,. Then

the quotient map A—A/P induces an isomorphism of #£(A/P) with “p. The
assignment

P=limrl,, ¢e€ép,

is a contravariant functor on the category of prime .4-ideals in /4. A straightforward
caiegorical argument proves

3.4. Lemma.

l@Fw$EEn lim 7I,.

we P pes,
In view of this and Proposition 3.1, we may suppose for the remainder of this
section that A is a Noetherian, unstable .4-integral domain.

Fix an integral extension A& such that I'=rE, E an elementary abelian p-
group. Every object of # is isomorphic to one of the form A—I'/Q, where Q is a
prime .4-ideal of I. Similarly, for each prime #-ideal P of A, every object of ép
is isomorphic to one of the form A/P—TI/Q where Q lies over P (that is, where
ONA=P). We may replace 4 and the &p by their full subcategories of objects of
the above forms.

Let L C I" be the inverse limit of all I'/Q where Q runs over the prime #-ideals
of I. We will prove that A< L is an F-isomorphism (that is, a purely inseparable ex-
tension) by induction on the Krull dimension of A. Therefore, we may assume that
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3.5) A/ANQ)SLALNQ)

is an F-isomorphism for all non-zero prime .4-ideals Q of A. By the proof of Pro-
position 3.3, we may assume that A4 and L are closed in /" under purely inseparable
extensions. We are reduced to showing that A=L. Let

J={xeA|xLcA}.

Then J is a .4-ideal. Fix a minimal prime .4-ideal P of A such that JC P. Then P
is not the zero ideal since J is not zero. Indeed, L is a finite A-module and is con-
tained in the field of quotients of A. Therefore, a common denominator of a set
of generators of L over A is an element of J.

3.6. Lemma. If P contains the maximal ideal of A, then A=L.

Proof. Since P contains the unique maximal ideal of A, P is the only prime ideal
of A containing J, for P contains every such prime ideal and is minimal. Conse-
quently, P=VJ, and there exists r=0 such that x?’'eJ for all xeP. Let xel
satisfy an equation

X"+ @, X"+ ta,=0
with each a;e 4. Then

mp" . p m=-Dp" r_

x" ta, \x +--+a; =0.

Since P contains_all the elements of A of nonzero degree, each 1af"eJ. _Thus
X" e A and x™" eJ. Choose s so that p*=mp*. Then x? =x"""xt' """ e A,
Since A is closed in L under purely inseparable extension, A=L.

To complete the proof of 1.4, we reason by contradiction. Assume /1 # L. Then
P does not contain the maximal ideal of A. Let A and L denote the graded localiza-
tions of A and L with respect to the homogeneous multiplicative system A — P. Then
A is a local #-algebra, and A/PA is the field of quotients of A/P.

3.7. Lemma. A is closed in L under purely inseparable extension. If A+L, then
A#L.

Proof. Let (a/z)’ € A where ae L and zeA— P. For some veA-P, y(a/z)P € A.
Thus, (ya)” € A. Since A is assumed to be closed under purely inseparable exten-
sion, yaeA. This proves the first assertion. Now suppose A=L. Let a,...,a,
generate L as a A-module, and let a,=b,/zy,...,a,=b,/z,, where b;e A and
z;,€A—P. If z=z,---2,, then za;€ A for each i; thus, 2L C A and z€ P. But this is
a contradiction since P is prime. Thus A #L.

Let P=PA and J=JA. Then JL c A, and P is the only prime ideal of A contain-
ing J. It follows that P is the radical of J, and

(3.8) xePL = xPeAd
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for some 7. Let Qy,...,Q,C L be the prime #-ideals lying above P. Since P is
maximal, each Q; is maximal. By the inductive assumption (3.5), each inclusion

(3.9) A/PasL/Q;

is a purely inseparable extension of fields. The following lemma contradicts the
hypothesis that A #L:

3.10. Lemma. There exists t =0 such that

-~

a~ !
xel = xPeA.

Proof. By (3.8), it suffices to show that, for some u=0, xe L=x"" € PL. Since the
extensions (3.9) are purely inseparable, there are integers ry,...,7;=0 such that

xel = xP"eA+Q,
for each i=1,...,s. It follows that
xel = x*""""eA+(Q,N--NQy).

But Q,, ..., Q, are all the associated prime ideals to PL; therefore, Q;N---NQ; is
the radical of PL and the result follows.

4. Integral closure and its consequences

The object of this section is to recover for graded algebras standard results about
integral Galois extensions (see Lang [10; IX, §2], for example). These results will
be used in section six to prove Theorems 1.6 and 2.6.

Fix, throughout this discussion, the following notation and hypotheses:

4.1. Let A be a graded integral domain over ¥, that is integraily closed in its graded
field of quotients K. Let L be a finite graded Galois extension of K with Galois group
G, and let I be the integral closure of A in L. Let PC A be a homogeneous prime
ideal. An ideal Q C I'is said to lie over Pif QN A = P; such an ideal is homogeneous.

4.2. Proposition. If Q and Q' are prime ideals of I' lying over P, then 4o € G such
that 6Q=0Q".

Proof. The standard proof (see, for example, [13; 111, Proposition 4]) works in the
graded case.

To prove the next few results, we need the following simple technical lemmas. Let
H be a subgroup of G,Q an ideal of I" and xe T, let

N@=]](t+0(x)), oeH



Noetherian cohomology rings 205

where ¢ is an indeterminant. Then
N,(x)="+c;(x)t" '+ +c(x) where r=|H]|.

4.3. Lemma. Let r=p°m, (m, p)=1. Then the binomial coefficient ( lfe) IS a unit in

F,.

Proof. (1+ )" "=(1+ Py (mod p); therefore,

(5)-(5) s

The normali;ed reduced trace of x relative to H is

rtr(H, x) = ce(x) / < r e).
p

4.4. Lemma. rtr(H, x) is H-invariant, and if o(x)=x (moc Q) for all 6 € H, then
rir(H, x)—zx”e (mod Q),
where |H| =p°m, (m, p)=1.

Continuing the notation 4.1, let O be a prime ideal of I" lying over P, and !¢t
Gyo={deG|a(Q)cQ}.

Gy is called the decomposition group of Q. Let LC L be the fixed field of Go:; let
ri=rnL9 and Q9=0QNL? Then Q is the only prime ideal of I" lying above Q¢
(by the above proposition).

4.5. Proposition. Let S be the multiplicative system of homogeneous elements of A
not in P. Then the extension of fields

S7'A/PoSTIre/Q°
is purely inseparable.
Proof. We may assume that P is maximal so that S™'A/P=A/P; then Q is also
maximal, and $~'r%/Q?=1?/Q° L=t a,,...,a, be a set of coset representatives of

G/Gy. Then the prime ideals of I'? lying over P are g,(Q), e, 0,(09). Let xerI'?
such that

y=0;(x) (mod g;(Q"))
for each i=1,...,n. Then a(¥)=x (mod Q°) for all 6 € G. By Lemma 4.4,
itr(G, y)=x?" (mod Q%) and rtr(G, y) e A.
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4.6. Corollary. Suppose, in addition, that I'=I'E, E an elementary abelian p-group,
and suppose that Q =Ker(I'E = T'E') where E' is a subvector space of E of dimension
one. Then A/P<I"%/Q°% is a purely inseparable extension.

Proof. If E’ and E” are distinct subspaces of E of dimension one, then E‘NE"=0.
Thus, in the above proof, Q+a(Q) is the augmentation ideal of I whenever
a4 Gy. Consequently, the Chinese Remainder Theorem may be applied :o the
elements o,(x) and ideals g,(Q9) whenever x has non-zero degree. Therefore, the
above proof goes through without first localizing.

4.7. Proposition. Under the hypotheses 4.1, if Q is a prime of I', and if I'/C is in-
tegrally closed, then the purely inseparable closure of I'®/Q% in I'/Q is integrally
closed in its graded field of quotients.

Proof. Let x, ye I'?, y¢ Q% represent elements %, y of I'*/Q? such that y#0. Sup-
pose that Z=x/y is integral over I"?/Q. Since I'/Q is integrally closed, Iz I” such
that z represents Z. Then rtr(Gg, Z)e I'%, and

rtr(GQ, Z)E Zpe (mOd Q)a

for g(Z)=o0(x)/a(y)=Z when g€ Gop.

4.8. Theorem. In addition to the hypotheses 4.1, let Q be a prime ideal of I lying
over P, and let K and L be the graded fields of quotients of A/P and I'/Q respec-
tively. Let Gy be the decomposition group of Q. Then L is a normal extension of
K, and the natural map

Go—Gal(L/K)

induced by reduction modulo Q is an epimorphism.

Proof. By localizing at P we may assume that P is maximal; then Q is maximal,
K=A/P,and L=I/Q. Let xeI represent xe /Q, and let f(X) be the irreducible
polynomial of x. Since A is integrally closed, f has coefficients in A, and f factors
into linear factors in I". Therefore, the reduction f of f mod Q factors into linear
factors in I/Q and the irreducible polynomial of % over A/P is a factor of f. It
follows that I'/Q is normal over A/P.

By Proposition 4.5, we may assume that 'Y= A; then Q is the only prime ideal
of I' lying above P, and I' is local. Let T Gal(L/K). We must construct g € G such
that the reductior & of ¢ modulo Q is equal to . It will suffice to check that 6=1
on the maximal separable extension of K in L. We will induct on the degree of L
over K.

Let K(%) be a non-trivial separable extension of K in L. Let xeI represent X.
Since K(x) is separable, K(¥) =K (.frps) for any s<0; tkus, we may suppose that x is
separable over K. We may further suppose that no conjugate of x represents ¥, for



Noetherian cohomology rings 207

let
H={oeG|a(x)=x (mod Q)};

then rtr(H, x) represents x”c, for some e, and is fixed by H. Since A is integrally
closed, x has 2 monic irreducible polynomial f(X) with coefficients in A; the reduc-
tion f of f mod P is the irreducible polynomial of % over K since distinct conjugates
of x reduce to distinct conjugates of x. Thus 7(¥) is a zero of f(X); let ¢ be chosen
so that ag(x) is the corresponding zero of f(X).

Let Z'= A[x]. The quotient field of 2'is K(x), and Z/(2 N Q) = K(%); the reduction
of ¢ mod Q agrees with 7 on K(%). It now suffices to show that X is integrally closed,
for then the theorem can be applied inductively with A replaced by 2 and r replaced
by (6) 'z

4.9. Lemma. Let A be an integrally closed graded domain, K its field of fractions,
L a finite-dimensional separable graded K-algebra, and I the integral closure of A
in L. Suppose w,,...,w, is a homogeneous basis of | over K contained in I'; then
there is a unique basis wf,...,w; of L over K for which Try g(w,w*)=6,
(Kronecker index); if d=Dy,(w,,...,w,) is the discriminant of the basis
Wis..., W,, ther d+0, and

Y Aw,gl“g(z Aw,-*>gd“<z Aw,-).
i=1 i=1

i=1
Proof. The proof of Bourbaki [5; V, §1.6, Lemma 3] works in the graded case.

To apply this lemma to X, notice tha’ 1,x,...,x" ! is a basis of = over A,
where n=deg(/). Let d=DK(x)/K(1,x,...,x"“). Since the conjugates of x are in
one-to-one correspondence with the conjugates of X% d reduces mod Q to
d=Dgyg(l, % ..., %" 1). But K(%) is separable; thus d+#0, and d¢ P. And A is
local; thus d~'eA. By the lemma, the integral closure of X is contained in
d-'X=2. Thus X is integrally closed.

4.10. Corollary. Under the hypotheses of Theorem 4.8, the separable degree of L
over K is finite.

A theorem of Borel [3; Theorem B] states that if G is a compact, connected Lie
group with no p-torsion, then any elementary abelian p-group is contained in a
torus. As an illustration of Theorem 4.8, I give the following amusing generali-
zation.

4.11. Proposition. Let G be a compaci connected lie group without p-torsion, let
E be an elementary abelian p-group in G, and let 0. E — E be ar. cutomorphisni in-
duced by conjugation (that is, 0 € ¥(G)). Then 0 is induced by an element of the
Weyl group W(G).
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Proof. Let 7 be a maximal torus containing E. Since G has no p-torsion,
H*(BG; F,) is a polynomial algebra on generators of even degree [4; Proposition
7.2, Theorem 19.1]. Thus H*(BG; F,) is integrally closed. Apply Quillen’s main
theorem [12; 6.2] and Theorem 4.8 with I'= H*(BT;F,), A=H*BG;F,), and
I/Q=H*BE; F,). Then Gal(L/K) is the automorphism group of E in #/(G). It
now suffices to show that I'* is a purely inseparable extension of A, for then
Gal(I/A) is a quotient of W. Now H*(BG; F,)=H*BT; Z)” ®F, [4; Proposition
29.2]; thus we only need

4,12. Lemma. Let X=Z[t,,...,t,], degt;=2, and let G be a finite group of
homogeneous automorphisms of X. Then (2 & le)G is a purely inseparable exten-
sion of " ®F,. If pt|G|, then the two are equal.

Proof. Let xe€ 2 be fixed under G modulo pZ. Then rtr(G, x) is fixed under G, and

rtr(G, x)=x* (mod pZ)
where |G |=p°m, (m, p)=1. If p1|G]|, rtr(G, x)=x (mod pX).

5. Polynomial invariants

This section contains a review of facts about polynomial invariants of Gl(n, F,)
that are needed for the rest of this paper or are useful in understanding Noetherian
cohomology rings. Most of the results given here are to be found in other sources
and are stated without proof. Proposition 5.8 may be new. At the end of this sec-
tion, Proposition 2.5 is proved.

Let F, be the finite field with g-elements, ¢=p°. Let I,,=F,[x,..., x,] be the
graded polynomial algebra on n-indeterminants of degree d. Then Gl(n, F,) acts on
I, by extension of its natural action on the [ -vector space I2. Let 4, be the ring
of polynomial invariants

4 o= r"Gl(n. F,,).

Recall the description of 4, due to Dickson. For ¢ tinct non-negative integers
€y...,€p, let

qfl q‘-'l .. q"l
xl xZ xn

e €3 e
PV Y Y
lers....e )= |71 2

n
DI S
If geGl(n,F)), then g(le,, ..., e,]) =det(g) [e}, ..., €,]. Put
D,,_,:[O, L...,i—-1Li+1,...,n], Ln:pn.n,
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5.1. Theorem (L.E. Dickson [8]). (1) g, ;= D, ;/L, is a polynomial for 0<i<n. In
particular, q,,=L%"", and q, ,=1.

(2) The algebra A,, of invariants of Gl(n, ;) is F,[q, 0s---+ Gy n-1]-

(3) The algebra of invariants of Si(n, F,) is FglL,qp s eevs Gy n-1]-

n

-1 .
) deg(L,)=d- =, deg(q,)=d@"~q).

(5) Let &,()=[](¢~a), ,ael';,d, & an indeterminant; then
?,(¢) = 6""+:§ (-1)"7*q,, &7
(6) gno=[la, @el?, a#0.
5.2. Proposition. Let f:I;,—1, _; be an epimorphism. Then for nzj>0,

f(Lp )= 0, P J ..
f(q’~)= Gn-ji-)7 J=i<n,
i iO, otherwise.

Proof. We may assume j=1, and

Xis O<i<n,
0, i=n.

Jix) = {

L’Hopital’s rule works for polynomials over [F,. It is easy to check that

3 (DY, >0,
ax, ™¥=0"10, i=0.

The result follows.

Now specialize to g =p; put d=2 for p odd and d=1 for p=2. Equip I, with
its unique structure as an unstable .#-algebra. Let Q% Q', Q% ... be the derivations
on I, given inductively by [2; §2]

(Q°x=kx for xe I, ™,
) Ql=Pl,
LQi+'=PplQi_QiPpl-

D n,i

5.3. Proposition ([11], [18]). For O0<i<n and 0<k<n,

' L, q,n-1, i=n-1,
l Pp L = n nn
S (L) {0, O<i<n-1.

, “Qnk9nn-1> i=n-1,
(2) Pp(Qn,k)= dnk-1s i=k-1,
0, otherwise.
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5.4. Proposition ({18]). The formulas 5.3(2) imply that for 0<i<n and 0<k<n,

. -1"'g,0, i=k,

1 —_ y
(l) Qq",k“{o’ l#k
2 Q"q't,k =(- I)NQn,kqn.O'

o. _(=Qnos k=0,
& P {o. k0.

n-1 . .

(4) o"+ E (-1)""'q,;,0'=0 onl,.

i=0
The following characterization of the elements g, ; by the action of the Steenrod
algebra on them is due to Adams and Wilkerson.
5.5. Theorem ([2; Theorem 5.11). There is a unique relation on I, of the form
Q"+¢, 10" N+ 46 Q%=0
where ¢y, ..., Cp_1€1I,. Thus ci=(—1)""q,,',~.

5.6. Corollary. The elements q, ; of I, are characterized by the formulas 5.3(2).
The element L, €T, is characterized by 5.3(1) up to multiplication by a unit.

Proof. The last assertion follows from the equation L?~' =qp0-

We will require certain generalizations of the g, ,’s. Let P be a prime .#-ideal of
I, and let I,/P=1TI. Put

gnp=[la, ae(;,-P)Y
5.7. Proposition. Let P and Q be prime #-ideais of I,, and let I,/P=1I,
I,/Q=I,. Then
(1) g, p reduces to zero inﬁl‘ 2/ Q unless QCP.
(2) g, p reduces to (g, ,)” ‘er,/P.

(3) If Q¢ P, g, p reduces to (q,,P/Q)pnrlern/Q-
@) If f:I, T, is an automorphism such that f(P)=Q, then f(q,, P)=dn o

Proof. If QZ P, then Fa e ([, —P)°such that a e Q; therefore, g, p=0 (mod Q). If
QC P, the order of Q% is p"~*, and modulo Q

anp=[le”", aeW,/Q-P/QY).

5.8. Propesition. For 0<s<n,

dns= Z dn P

where the sum runs over all prime %-ideals P of I, such that I',,/P=T,.
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Proof. Let = ¥ g, p. Clearly x is an invariant of Gl(n, F,), and deg(x) =d(p" - p*).
A straightforward exercise in elementary number theory shows that the only
monomial in g,,...,q, - having degree d(p"-p®) is g, . Therefore, x is a
multiple of g, ,. But for any prime .4-ideal P such that I',/P=T,, x reduces
modulo P to qs{’:) . By Proposition 5.2, X=qy .

Proof of Proposition 2.5. Let ¢ be a category and I a functor on ¢ satisfying 2.3(1)
and 2.3(2). For g€ 4, let

Aw = ([’w)Aut(rw).

There is an isomorphism I, = I, for n=rank(l,); such an isomorphism induces an
isomorphism 4,-=4,, which does not depend on the choice of I,=r,. Let
Qy.i~qn,i under the isomorphism A4, =4, Since each I';— T, is epic for 0—~¢pe «,
A44—4, and 4 is a functor on ¢. Let

A4=1im4,;
ves
A is a sub- Z-algebra of A =l§g1 r,.
We may assume that ¢ has finitely many objects. For ¢ € &, let r(¢) =rank(/,)
and let

n=sup{r(p)|pe&}.

For each g€ ¢, let 4,—I, be the unique map induced by any epimorphism
I, —T,. Then all diagrams

commute for ¢ —>0€ &. Thus there are inclusions 4,4 AGI]T,. By 5.1 and
5.2, each 4, T, is a finite morphism, for I, may be obtained from the image of
A,~T, by adjoining finitely many integral algebraic elements. Therefore [] I,
@€ &, is a finitely generated 4,-module. Since 4, is Noetherian, so are 4 and A.
This proves 2.5.

6. Proof of Theorems 1.6 and 2.6

6.1. Proposition. Let & be a category and I a functor that satisfy 2.3(1) to 2.3(5).
Let A= lir_n I,, p€ &. Then there is an integer =0 such that, for each p € &, there
exists v,€ A that satisfies:

(1) If 0€ &, then v, reduces to zero in I'y unless there exists 6 —¢ in ¢.

(2) v, reduces to (qa,,o)"H eI, where s=rank(l,) and q,0=[la, ael, c,d, a*0.
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(3) More generally, for 6—¢, v, reduces to

v,,0= L (a0 p)" €Iy

where s=rank(ly), P runs over all prime #-ideals of I'y for which there exists
0—ge é such that P=Ker(Iy—T,), and qq p=Tla, ae (- P)".
Furthermore, e may be taken to be max{rank(/;) | pec}.

Proof. Put
e=max{rank(l},)|ge ¢},

and fix g € 4. Let v, € [T}, 6 € &, be the element described above. We must show
that v,e A. For each f€ &, let

S,={Pcly|d0—¢pe & P=Ker(I'y—T,)}.

Let f:0—ne . Then If':S,—S, is a monomorphism that sends PCT; to
[f'(P)cT,. Let Q=Ker I'f, and let P€S,. If QZ P, then g, p reduces to zero in
I, (see 5.7). If QC P, then P=/"'(P/Q), and by 2.3(3), P/Q€S,. Then

r(0) - r()

@ p) =5 pro)’

as required.
Remark. Proposition 6.1 and its proof are a correction of [12; 11.4].
6.2. Proposition. If & and I' satisfy 2.3(1) to 2.3(5) and A =Ii_r_n I,, p€é, then for

each pe ¢
Aut.(p)=Gal(l,/A,) where A,=Im(A—T)).

Proof. For each per, let
Z(p = rwAut'((o)‘

[ must show that X, and A, have the same field of quotients up to purely in-
separable extension. Let v, € A be the element constructed in Proposition 6.1; I will
show that

(,Z,)" cA, for some s=0.

6.3. Lemma. Let 0,9 € ¢, and let xev,Z,. Then for some s=0, there exists y € 2y
such that:

(1) For all f:0-¢e ¢, Tf(y)=x".
(2) If g: 68— €&, then I'g(y)=0 unless there exists n—>p€ &.
B)Ifg:0—ned, then ig(y)eZ,.

Proof. Let &, be the full subcategory cf ¢ such that n is an object of &£, if and only
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if there exists a map #—n in #. The lemma is non-triviai only when ¢ € 4. Con-
sider the category ‘¢, constructed as follows. Let the objects of 4, be the prime .4-
ideals of I'p. If P and Q are objects of ¥, let the morphisms from P to Q in #,
be the .4-morphisms I'y/P—I,/Q. If g: [, =1, is an automorphism such that
g(P) ¢ Q, then g induces a morphism g(P, Q) : [3/P—1y/Q; every morphism of %,
arises in this way. The conditions 2.3(3), 2.3(4), and 2.3(5) mean precisely that we
may assume ¢, to be a subcategory of %, that has the same objects as 44 and that
has this additional property: if P, Q, and R are prime S-ideals of I, and if f and
g are automorphisms of I'p such that f(P)C Q and g(P) C R, then f(P,Q),g(P,R) e
£ =80°f (O, R) € é,. For convenience, we may further assume that each quotient
map /P —I,/Q is a morphism in &, whenever P Z Q. This is equivalent to picking
a preferred map @ —n for each object n of ¢4 and identifying n with the kernel of
I'y—T; and I'; with I'y/m; in particular, 6 is identified with the zero ideal.
As in the proof of the previous proposition, for me ¢y, let

S,={ncCly|nCnand n=¢ in &,}.

Let G be the groupoid that has as objects the elements of Sg and as maps between
objects ng, 7, all automorphisms g of 7' such that g(ny) =», and g(ng, 7,) € ¢4. For
each n €Sy, let G,=Autg(n). Then reduction modulo # induces an epimorphism
G, —Aut, (1), for Aut.(n) is a subgroup of Aut(/;) and I;,=I/n. Let &, ="
If g:n—nis a map in G, then g restricts to an isomorphism of &, onto ®,,, which
does not depend on the choice of g:m—#n. Furthermore, all the diagrams

S, —5 P,
Zn &(mm 2

commute, where the vertical maps are induced by any maps §—=n and 8—# in 4.
By 4.7 and 4.8, X, is a purely inseparable extension of &,/(®,Nn).

Let xev,2,; then X = Uy Xo, Xxp€Z,. Choose s=rank(l; 9)-rank(1" ) and ye @,
such that Yo reduces to xg’ in I',. There is a power g of g, such that gy, redy ces
to x” in r,. Put y,=qy,. For each neSy, let y,=g(y,) where g:9—nis a 1aap
in G; y, is mdependent of the choice of g For any maps n—¢ and 85 in ¢4, the
composition Iy =1, =T, sends y, to x?’: furthermore if 7 is a prinie .4-idea’ of
r,, then y,=0 (mod n) unless ncn. Put

y=2yq, ﬂGSg.

Then, as in the previous proposition, for any 6—>¢e€ &, I3—I, sends y to x?,

and for any #—n in &, I3—T, sends y to zero unless there exists 7—¢ in ¢,.
Finally, let f:0—me &,; to prove: f(y)€Z,. Conjugating by an automorphism

of min #,, we may suppose f is the quotient morphism I'y—I,/rn. Note that §, C S
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and that the ideals n/n C I, for n€ S, are precisely the ideals that arise as kernels
of morphisms n—¢ in &,; therefore, Aut () acts as a group of automorphisms of
S,. Let g€ Auts(n). If neSy—S,, then f(y,)=0, and gf(y,)=/(y,). Let n€S;.
There exists g€ Aut(l3) such that g(nr)=n and g(m, n)=2. Then g:n—gn in G.
Therefore, g(y,) =Yg, and &(y,) =Sf(Vg,). It follows that gf(y) =/(y). This proves
the lemma.

To complete the proof of the proposition, note that if ¢ has an initial object the
proposition follows immediately from the lemma. Otherwise, induct on the number
of isomorphism classes of minimal objects in ¢. The details are left to the reader.
The key ingredients are the above lemma and this fact: if e & and x, ye 2, then
x-y)ev, Z, iff I'f(x)=If(y) for all f:m—n in & such that f is not an
equivalence.

Proof of Theorems 1.6 and 2.6. Let & be a category and I" a functor that satisfy
2.3(1) to 2.3(5); let A =h;l_l_1 I,, € &. We may suppose that & is a finite category.
To prove: #': & = &£(A) is an equivalence of categories.

First, I claim that every isomorphism class of £(A1) contains an object of the form
A=T,, peé. To see this, let §: A—T be an object of #£(A), and let Py=Ker(6).
As in the proof of 2.5, let IT=[[ I, p € &; then A CI1, and [T is a finite A-module.
By the going-up tiieorem, there is a prime #-ideal @ of IT such that Py=QNA.
Now, every prime #-ideal of IT has the following form: let ¢ € ¢ and let P be a
prime #-ideal of I',; then the inverse image of P by the projection IT—T, is a
prime 4-ideal

Qlp, P)=]] I xP
nEY
of I1. Thus, there exists ¢ € ¢ and P I, such that Q= Q(g, P). By 2.3(4), there ex-
ists 9 > me 4 such that P=Ker(/,—I); then Py=Ker(A—TI3). Thus, #n=40.
Second, let ¢ and 6 be objects of &, and suppose there exists a map #p— .70 in

£(V'); I claim that then there exists a map ¢ =0 in &. For a map #p— .#0 is a com-
mutative diagram

p

A
Let vge A be the element constructed in Proposition 6.1. Then v, does not reduce

to zero in I',; therefore, there exists p—~6€ ¢.

Finally, if p 36 are two morphisms of & or £(A), then 2.3(3) guarantees the ex-
istence of a commutative diagram

Iy
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7/ l

/ |
in the appropriate category. Thus, to complete the proof we need only show that

Aut . (¢)=Aut,4,(¥9)

for each ¢ € &; but this is Proposition 6.2.

7. Examples

The exa:aple which motivated the foregoing research is the exceptional Lie group
F,. Let A=H*BF,; F;)/V0.

7.1. Theorem (Toda [15]). A is generated by elements x4, Xg, X2, X265 X3¢, Xa3, Where
x;€ A%, and is subject to the relations
X4X26=0,  XgXp=0,  XpX2=0,
(R) X30=Xag X3 + X35 X3 — X30X3Xs.
Furthermore
F3[xg, Xg, X20, X36: Xas]/R = H*(BT: F3)",

where T is the maximal torus and W the Weyl group of F;.

7.2. Corollary.

A=TF;3lx, X36, Xag] II  Falxas X3, X20, X365 Xa5]/R.

Fibxige Xas)

7.3. Theorem (Toda [15]). In F3lxy, X3, X4g), the reduced power operations are
determined by

P'(x2) =0, P'(x3)=0,  P'(xy)=x3%,
P (xy6) =0, Plxy) =Xy, Pxy)=0,
PP(xy5) = Xp6x36,  Pxse) = =X, P°(X45) = —X36Xs3-
Let E;C F, be a maximal elementary abelian 3-group of rank three correspond-
ing to the factor F.[xy, X3, Xs3] in 7.2. Then we may assume that E;N 7T is an
elementary abelian 3-group of rank two; denote it by E,. Let 3= H*(Ey; FiN0,

I =H*(E5; [F,)/\/ﬁ, and I';= H*(BT; [;). By comparing the formulas of 7.3 with
5.3 we prove:
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7.4. Proposition. Under the map A— 13, x4 reduces to qs y, X3¢ reduces to qs , and
Xy reduces to a non-zero multiple of L. Thus, W(E;)=SI(3, ;).

J.F. Adams has confirmed this proposition by direct calculation in F, (private
communication).

Similarly, observe that in F;[x3g, Xsl, the derivations Q', Q2 ... are all zero.
Thus in I3, the reductions of x3¢ and x;3 have (unique) cube roots y;; and y¢ [2;
Theorem 1.2]. Furthermore,

Pl()’lz):)’m, Pl(y16)=0:
P (y12)=-yh, P »i)=-Y12)ie
Thus y13=¢1,1, Y16=42,0-

71.5. Proposition. Under the map A— T3, Xy, reduces to (g,,,)’ and x5 reduces to
(g2,0)’- Thus, W(I3)=Gl(2, F).

I conclude with an example illustrating Theorem 4.8. It is also an example of a
Noetherian .Z-algebra that is not integrally closed.

7.5. Example. Let
p=5, I'=Fslx,u,v], A=Fs[x,u?+0v?u?v?].

Then A=H*(BS'xBSp(2); F5). Map I' to I'=Fg[x, y] via x—x, u—=3(x+y),
v—4(x—y). Then the image of this map is A =Fs[x, xy, y*]; A4 is not integrally
closed, for y=(xy)/x is integral over A. Thus, Gal(I/A)={1}. Map I to Fs[y]
via x—9.

The image of A in Fs[y] is Fs/[»*); Gal(Fs[y)/Fs[¥*])=Z/4 generated by
y—3y. Gal(I/A)= W(S' xSp(2)) is generated by transpositions u« —u, ve —v,
and uev; it is a semi-direct product (Z/2%xZ/2)x2Z/2. Q=Ker(I'=F;[y]) is
generated by x and (3v—u); QNA is generated by x and u?+ v2. The decomposi-
tion group of Q is a Z/4 generated by

u—=>-u, v=u.

This transformation maps to y—3y (mod Q).
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